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Preface

SpecProFi has been developed in the group of Prof. Dr. Stefan Weber at the University of

Freiburg, Freiburg im Breisgau, Germany, during the last couple of years as a software for

advanced data processing and analysis of EPR data. This manual describes the general

usage of SpecProFi and gives an overview of the maths behind that has been implemented.

If you use SpecProFi for your own research and publish results accordingly, please give

credits citing the appropriate reference :

S. Rein, Development of advanced simulation and analysis programs for EPR spec-

troscopy, dissertation, Freiburg, 2019.

Some parts of this Manual were taken form the dissertation [1] of which the author is the

author of this manual.

A number of people have helped shaping SpecProFi and the ideas behind. First and

foremost, Prof. Dr. Stefan Weber and Dr. Sylwia Kacprzak (now Bruker Biospin).

Freiburg, October 2019

Stephan Rein

Disclaimer

SpecProFi is provided ”as is”, without warranty of any kind, express or implied, including

but not limited to the warranties of merchantability, fitness for a particular purpose and

noninfringement.
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1 Introduction

1.1 General Description

SpecProFi is a MATLAB-based EPR data processing and fitting framework, supporting

global analysis. SpecProFi relies on the simulation functions of the EasySpin simula-

tion toolbox [2, 3]. The EPR data processing framework is a collection of individually

callable functions for processing raw data, including phase correction, baseline correction

and data denoising. The analysis/fitting framework consists of one user-callable function,

that accepts various user-defined settings. This function internally invokes the simula-

tion routines of the well-established and comprehensive simulation framework EasySpin

and supports different experimental data sets to be analyzed globally. This includes the

simultaneous analysis of combinations of cw-EPR data measured at different microwave

frequencies, different harmonics, ENDOR and cw-EPR data, or cw-EPR data recorded

under solid-state and liquid-state conditions. There are no restrictions of SpecProFi as

long as there is an EasySpin simulation routine available for the simulation of a certain

EPR experiment.
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1.2 Installation Instructions

SpecProFi is available free of charge and open source. It can be downloaded from our home-

page https://www.radicals.uni-freiburg.de/de/software/specprofi It

is sufficient to download the SpecProFi folder as well as the current EasySpin version

http://www.easyspin.org/ and set the path to your MATLAB workspace.
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2 Data processing

2.1 List of all data processing functions

Alphabetically ordered processing functions of SpecProFi with cross reference:

1. APC()

2. baseline correction()

3. diff Tikhonov()

4. diff Tikhonov F()

5. discrete wt()

6. Gaussian smooth()

7. Hilbert transform()

8. idiscrete wt()

9. int and diff()

10. LoadEPRfile()

11. normalize()

12. phase offset()

13. pseudomod()

14. wavelet denoising()

15. SVD denoising()
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2.2 Loading data files

For loading some experimental EPR file, the LoadEPRfile() function can be used.

Either text files or Bruker files can be loaded:

Script 1: Loading experimental EPR data sets.

% Load a text file
[field, spc] = LoadEPRfile(’Sample123.txt’);

% Load a Bruker file (.DSC and .DTA or .par and .spc)
[field, spc] = LoadEPRfile(’Sample123’);

The LoadEPRfile() automatically determines if the signal has only a real part or a real

and imaginary part. In case the loaded signal was recorded using a quadrature detection,

the signal (S) is composed of a real and imaginary part:

[B, S] = LoadEPRfile(’Some_ELEXSYS_file’)

with

S = Sreal + i · Simag

Two additional strings can be passed to the function to integrate the signal or reconstruct

the imaginary part (the function only uses the reconstruction algorithm if no imaginary

part was recorded).

Script 2: Additional options for a real valued data set.

% Load a Bruker file and reconstruct the imaginary part automatically
[field, spc] = LoadEPRfile(’Sample123’, ’imag’);

% Load a file and return the integrated signal
[field, spc] = LoadEPRfile(’Sample123’, ’integrate’);

% Load a file and return the integrated signal with imaginary part.
% The imaginary part is reconstructed if not present in the loaded data set
[field, spc] = LoadEPRfile(’Sample123’, ’imag’, ’integrate’);

If you want to have more detailed information about the function or about the input and

output parameter then use the help function of MATLAB.
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>> help LoadEPRfile

The output of the help function for the LoadEPRfile function is shown in Script 3.

Script 3: Information shown on the console when invoking the help function

Usage
-----
Load EPR files by providing either text file formats or
Bruker file formats (EMX, ESP, ELEXSYS)

INPUT:
data_file - string

Filename of the experimental data set

OUTPUT:
xaxis - vector

X-axis data vector

signal - vector
Signal data vector

Notes
-----
EPR data import function. The function can read text file formats,
provided as .txt or as .dat. Two columns (field, intensity) are expected
for a signal with only real entries. Three columns (field, realpart,
imaginarypart) are expected for a signal which was recorded with
quadrature detection.
Furthermore, Bruker file formats can be read. For this, both files, the
binary (.DTA or .spc) and the description file (.DSC or .par) needs to be
present. If a Bruker file should be read the filename need to be given
without file format.

Examples
--------
[B, spc] = LoadEPRfile(’Test_data.txt’)

[B2, spc2] = LoadEPRfile(’Some_EMX_file’)

Copyright (c) 2019, Stephan Rein
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2.3 Normalization

Normalization of the experimental signal can be carried out using the normalize()

function ofSpecProFi. Different approaches for a normalization are available. The default

method is the normalization to the absolute maximum of the signal. Alternatively a

normalization to the (non-absolute) maximum of the signal, to the area, or to the area

normalized to the number of data points can be carried out.

Script 4: Normalization function of SpecProFi.

% Use the default normalization to the absolut maximum
signal = normalize(signal);

% Normalization to the (non-absolute maximum)
signal = normalize(signal, ’max’);

% Normalization to the area of the signal
signal = normalize(signal, ’area’);

% Normalization to the area of the signal normalized to the
% number of data points
signal = normalize(signal, ’area per point’);

Comparison between normalization of a signal to its area and to its area with renormal-

ization to the number of points is shown for two different signals with a different number

of points in Figure 1.
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Figure 1: (Left) Two signals with a different number of points normalized to their area. One
signal was shifted vertically for the sake of clarity. (Right) Two signals with a different number
of points normalized to their area with renormalization to their number of points. One signal
was shifted vertically for the sake of clarity.
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2.4 Baseline correction

A baseline correction can be carried out by fitting a polynomial function to a specified sig-

nal range (at the low- and high-field edge) by invoking the function baseline correction().

The default setting is a polynomial of degree one and 10% of the signal of the low-field

and high-field edge for determining the polynomial function. The polynomial degree and

spectral region can be set by the user if required.

Script 5: Baaseline corrections of some EPR spectrum.

% Using default setting (10% and polynomial degree = 1)
signal = baseline_correction(signal)

% Using a third order polynomial function
signal = baseline_correction(signal, 3)

% Use a third order polynomial function, 15 percent of the spectrum for
% determination and additionally return the polynomial function
[signal, polyn] = baseline_correction(signal, 3, 15)
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Figure 2: Example for a baseline correction, using the default settings of
baseline correction().
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2.5 Reconstruction of the imaginary part (Hilbert transform)

To reconstruct the imaginary part, if not already available in the raw data, a Hilbert trans-

form is applied to the real-valued data set using the function Hilbert transform().

The implemented algorithm is according to [?].

Script 6: Baaseline corrections of some EPR spectrum.

% The Hilbert transform function reconstructs the imaginary part
[realpart,imagpart] = Hilbert_transform(signal);
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Figure 3: (Left) Real-valued EPR signal. (Right) Reconstructed imaginary part using the
Hilbert transform() function.
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2.6 Phase correction

The phase of the signal can be corrected manually with a user defined phase angle γ by

applying the phase offset() function. Alternatively, the phase can be automatically

corrected using an algorithm implemented in the APC() function of SpecProFi. Both

functions use the imaginary part if provided. Otherwise, the imaginary part is automati-

cally reconstructed using a Hilbert transform.

Phase offset

Examples for the phase offset function is shown in Script 8 and Figure 6.

Script 7: Baaseline corrections of some EPR spectrum.

% Offset by an angle of phi = pi/5
phi = pi/5
signal = phase_offset(signal, phi)

% Providing realpart and imaginary part separately
phi = pi/5
signal = phase_offset(realpart, imagpart, phi)

% Getting the realpart and imaginary part separately back
phi = pi/5
[realpart, imagpart] = phase_offset(signal, phi)

330 340 350 360 370

 N
or

m
al

iz
ed

 In
te

ns
ity

 magnetic field / mT
330 340 350 360 370

 N
or

m
al

iz
ed

 In
te

ns
ity

 magnetic field / mT

Figure 4: (Left) Real part of a signal with a phase offset of φ = π/3. (Right) Real part (blue)
and imaginary part (red) of a signal with a phase offset of φ = π/3. The imaginary part was
shifted for clarity.
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Automatic phase correction

Examples for the phase offset function is shown in Script 8 and Figure 6.

Script 8: Baseline corrections of some EPR spectrum.

% Standard automatic phase correction
signal = APC(signal);

% Phase correction of a absorptive signal
signal = APC(signal, ’Harmonic’, 0);

% Getting the the phase corrected signal and the
% phase angle phi back
[signal, phi] = APC(signal);
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Figure 5: (Left) Signal, recorded with a bad phase. (Right) Signal after using the APC()
function of SpecProFi.
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2.7 Integration or differentiation

The signal can be integrated or differentiated using the int and diff() function. For

integration a cumulative summation algorithm is used. For differentiation the function

uses a midpoint differential matrix approach. This matrix is ill-conditioned and for the

differentiation of not noise-free experimental data the pseudomod,diff Tikhonov()

or diff Tikhonov F() is recommended.

Script 9: Integration and differentiation of signals.

% Integration of a signal
signal = int_and_diff(signal, 1);

% Doubel integration of a signal
signal = int_and_diff(signal, 2);

% Differentiation of a signal
signal = int_and_diff(signal, -1);
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Figure 6: (Left) Original signal before integration. (Right) Signal after double integration using
the int and diff() function of SpecProFi.
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2.8 Pseudo-field modulation and Tikhonov regularization for

differentiation

To differentiate a signal, different methods are implemented to stabilize the differentiation

procedure, which is an ill-posed problem. Pseudo-field modulation [?] uses a convolution

of the signal with the Fourier transform of a Bessel function of first kind to render the pro-

cedure better-conditioned. Alternatively Tikhonov regularization can be used to stabilize

the differentiation.
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Figure 7: (Left) Original noisy signal before differentiation. (Right) Signal after numerical
differentiation using the int and diff() function of SpecProFi.
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Pseudo-field modulation

Pseudo-field modulation can be carried out using the pseuodmod() function of SpecProFi.

To apply a pseudo-field modulation, a modulation amplitude needs to be provided, as well

as the magnetic field vector (in mT). Examples for pseudo-field modulations are shown

in Figure 8.

Script 10: Pseudo-field modulation function of SpecProFi.

% Pseudo-field modulation with a modulation
% amplitude of 0.1 mT
signal = pseudomod(B, signal, 0.1);

% Pseudo-field modulation with a modulation
% amplitude of 0.25 mT
modamp = 0.25
signal = pseudomod(B, signal, modamp);

% Pseudo-field modulation with a modulation
% amplitude of 0.1 mT. Additionally the integrated
% (denoised) signal is retuned
[signal, signal_denoised] = pseudomod(B, signal, 0.1);

% Pseudo-field modulation with a modulation
% amplitude of 0.1 mT using additional truncation
% in the Fourier space after 100 points
cutoff = 100;
signal = pseudomod(B, signal, 0.1, cutoff);
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Figure 8: (Left) Using pseudo modulation with 0.1 mT modulation amplitude. (Right) Using
pseudo modulation with 0.25 mT modulation amplitude. The known ”optimal” solution is
illustrated in red.
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Tikhonov regularization for differentiation

Two functions, diff Tikhonov() and diff Tikhonov F(), are available in SpecProFifor

differentiation of a EPR signal using Tikhonov regularization. diff Tikhonov() uses

a combination of a second derivate operator multiplied with a first derivative operator as

penalty matrix while diff Tikhonov F() carries out a regularization in Fourier space

using a unit matrix as penalty expression. Additional options can be provided to both

methods, submitted in a structure. Examples for both methods are shown in Figure 10.

Script 11: Tikhonov regularization methods available in SpecProFi.

% Standard Tikhonov regularization in field domain
signal = diff_Tikhonov(signal)

% Standard Tikhonov regularization in Fourier space
signal = diff_Tikhonov_F(signal)

% Passing Options (for detailed information use the help function)
Opt.method = ’AIC’ % Using AIC method for determining alpha
Opt.eval = ’fast’ % Faster evaluation using interpolative methods
Opt.adjustment = ’small’; % Reducing alpha by a factor of 10
Opt.bound = ’off’; % Disables cyclic boundary conditions
signal = diff_Tikhonov(signal, Opt)
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Figure 9: (Left) Tikhonov regularization of the signal using the diff Tikhonov() function
of SpecProFi. (Right) Tikhonov regularization of the signal using the diff Tikhonov F()
function of SpecProFi. The known ”optimal” solution is illustrated in red.
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2.9 Denoising methods

SpecProFi provides several denoising methods which are listed in the following.

Wavelet transform denoising and discrete wavelet transform

SpecProFi provides a Wavelet transform denoising tool, implemented in the wavelet denoising()

function. Different wavelet families are available, the default is the Coiflets-4 wavelet.

Script 12: Denoising using the

% Standard Wavelet denoising in SpecProFi
signal = wavelet_denoising(signal)

% Using a specified wavelet family
family = 3;
signal = wavelet_denoising(signal, family)

% Using a specified wavelet family and maximum decomposition
% level
family = 2;
maxlevel = 4;
signal = wavelet_denoising(signal, family, maxlevel)

% List of implemented Wavelet families
% Number family
% 1 Daubechies D6-Wavelet
% 2 Daubechies D10-Wavelet
% 3 Daubechies D20-Wavelet
% 4 Symlets 10-Wavelet
% 5 Coiflets 4-Wavelet
% 6 Haar-Wavelet
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Figure 10: (Left) Noisy signal. (Right) Denoised signal using the default settings of the
wavelet denoising() of SpecProFi.
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Discrete wavelet transform (DWT) and inverse discrete wavelet transform (DIWT) can be

performed using the discrete wt() or the idiscrete wt() function of SpecProFi.

Script 13: Discrete wavelet transform and inverse wavelet transform, implemented in SpecProFi.

% Standard discrete wavelet transform of SpecProFi
[trend, detail] = discrete_wt(signal)

% Discrete wavelet transform with a user-specified wavelet family
family = 4;
[trend, detail] = discrete_wt(signal, family)

% Standard inverese discrete wavelet transform of SpecProFi
signal = idiscrete_wt(trend, detail)

% Discrete inverse wavelet transform with a user-specified wavelet family
family = 4;
signal = idiscrete_wt(trend, detail, family)

An example for a discrete wavelet transform is shown in Figure 11.

335 340 345 350

 N
or

m
al

iz
ed

 In
te

ns
ity

 magnetic field / mT
335 340 345 350

 N
or

m
al

iz
ed

 In
te

ns
ity

 magnetic field / mT

Figure 11: (Left) Noisy signal. (Right) Signal after the discrete wavelet transform. The trend
is illustrated in blue while the detail part is illustrated in red.
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Gaussian smoothing

Gaussian smoothing, implemented in the Gaussian smooth() function, is a convolu-

tion of the signal with a Gaussian function. This leads to a smoothing of the signal. The

magnetic field needs to be provided as well as the full width at half maximum (FWHM)

of the Gaussian function in mT.

Script 14: Gaussian smoothing of EPR signals

% Gaussian smoothing using a FWHM of 0.3 mT
FWHM = 0.2 % Full width at half maximum in mT
signal = Gaussian_smooth(B, signal, FWHM)

% Using a broad Gaussian for smoothing
FWHM = 0.5 % Full width at half maximum in mT
signal = Gaussian_smooth(B, signal, FWHM)

An example for a Gaussian smoothing is shown in Figure 15.
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Figure 12: (Left) Noisy signal. (Right) Signal after Gaussian smoothing using the
Gaussian smooth() of SpecProFi with a FWHM of 0.2 mT.
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SVD-based denoising

SpecProFiprovides the function SVD denoising() for the singular-value-decomposition-

based denoising of a signal. The EPR signal is periodically arranged in a Hankel-type

matrix. Subsequently, a singular value decomposition of this matrix is carried out and

singular values below a certain threshold are set to zero. Per default, the threshold is

determined algorithmically. Denoising using SVD-based method is extremely powerful if

subsequently a Gaussian smoothing is carried out.

Script 15: SVD-based denoising

% Denoising using the SVD-based method
signal = SVD_denoising(signal)

% Denoising using the SVD-based method. Additionally the
% singular values are returned in a vector.
[signal, SVDs] = SVD_denoising(signal)

% Denoising using the SVD-based method. The trunctation
% limit is set to 20 so that only the first 20 singular values
% are kept. Subsequently Gaussian smoothing is applied.
signal = SVD_denoising(signal, 20)
signal = Gaussian_smooth(B, signal, 0.01);
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Figure 13: (Left) Noisy signal. (Right) Signal after SVD-based denoising, using the default
settings of the SVD denoising() function.
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3 Fitting

3.1 General remarks

The fitting module of SpecProFi is the central feature of the program. Global analysis is

supported as well as stochastic sampling of initial parameter guesses. In contrast to the

data processing function, EasySpin is required for the fitting module [2,3]. The EasySpin

syntax is retained. All fitting parameters, usable in SpecProFi, are provided in a FitOpt

structure. The Opt structure (for simulation options) is not mandatory. A basic example

for fitting a solid state spectrum is shown in Script 16

Script 16: Basic example for fitting a solid-state spectrum (pepper).

% Load the signal
[field, spc] = LoadEPRfile(’Sample123’);

% EasySpin parameters
Exp.mwFreq = 9.7;
Exp.Range = [min(field), max(field)];
Opt.nKnots = 12;
Sys.S = 0.5;
Sys.g = [2.02, 2.04, 2.12];

% Parameters for fitting
Vary.g = [0.03, 0.03, 0.06];

% SpecProFi options
FitOpt.nLHS = 100;
FitOpt.nIter = 31;

% Call SpecProFi
SpecProFi(’pepper’, spc, Sys, Vary, Exp, Opt, FitOpt);
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3.2 Global analysis

For a global analysis multiple data sets are passes to the specprofi() main function.

If additionally different EasySpin simulation functions (’pepper’, ’garlic’, ’salt’, ...) are

required, a cell array of the corresponding strings can be passed.

Script 17: Basic example for fitting a solid-state spectrum (pepper) and a fast-motion spectrum

(garlic).

% Load the signal
[field, spc] = LoadEPRfile(’Sample liquid’);
[field, spc] = LoadEPRfile(’Sample solid’);

% EasySpin parameters
Exp.mwFreq = 9.45;
Exp.Range = [min(field), max(field)];
Exp2.mwFreq = 9.7;
Exp2.Range = [min(field2), max(field2)];
Sys.S = 0.5;
Sys.g = [2.02, 2.04, 2.12];
Sys.logtcorr = -11.0;

% Parameters for fitting
Vary.g = [0.03, 0.03, 0.06];

% SpecProFi options
FitOpt.nLHS = 100;
FitOpt.nIter = 31;

% Call SpecProFi
SpecProFi({’garlic’,’pepper’} , {spc, spc2}, Sys, Vary, {Exp, Exp2}, FitOpt);
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3.3 All fitting options

3.3.1 Basic fitting options

Option = Function

FitOpt.LHS true, false Enables Latin-hypercube sampling

FitOpt.nTrials n Number of sampling points

FitOpt.algorithm ’name’ Optimization algorithm

FitOpt.nIter n Number of iterations in optimization

FitOpt.TolFun n Function tolerance for optimization

FitOpt.cuttingup n, [n1, n2, ...] Cutting on the right side

FitOpt.cuttingdown n, [n1, n2, ...] Cutting on the left side

FitOpt.weightingup n, [n1, n2, ...] Right end of the weighted region

FitOpt.weightingdown n, [n1, n2, ...] Left end of the weighted region

FitOpt.weightingfactor n, [n1, n2, ...] Weighting factor for the defined region

FitOpt.useParallel true, false Enables parallel computing

FitOpt.AbsScale true, false If disabled, signal parts can be larger one

A standard fitting example is presented in Script 18, using the options presented above.

Script 18: Basic example for fitting a solid-state spectrum (pepper) using more fitting options

of SpecProFi.

% Load the signal
[field, spc] = LoadEPRfile(’Sample123’);

% EasySpin parameters
Exp.mwFreq = 9.7;
Exp.Range = [min(field), max(field)];
Sys.S = 0.5;
Sys.g = [2.02, 2.04, 2.12];

% Parameters for fitting
Vary.g = [0.03, 0.03, 0.06];

% SpecProFi options
FitOpt.LHS = false; % Enables Monte-Carlo sampling
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FitOpt.nTrials = 200;
FitOpt.nIter = 51;
FitOpt.weightingdown = 320;
FitOpt.weightingup = 332;
FitOpt.weightingfactor = 2; % Double weighting between 320 and 332 mT
FitOpt.useParallel = true;
FitOpt.algorithm = ’sqp’;
FitOpt.AbsScale = false;

% Call SpecProFi
SpecProFi(’pepper’, spc, Sys, Vary, Exp, FitOpt);

For a global analysis the example presented above could look like shown in Script 19.

Script 19: Basic example for fitting a solid-state spectrum (pepper) using more fitting options

of SpecProFi.

% Load the signal
[field, spc] = LoadEPRfile(’Sample liquid’);
[field2, spc2] = LoadEPRfile(’Sample solid’);

% EasySpin parameters
Exp.mwFreq = 9.45;
Exp.Range = [min(field), max(field)];
Exp2.mwFreq = 9.7;
Exp2.Range = [min(field2), max(field2)];
Sys.S = 0.5;
Sys.g = [2.02, 2.04, 2.12];
Sys.logtcorr = -11.0;
% Parameters for fitting
Vary.g = [0.03, 0.03, 0.06];

% SpecProFi options
FitOpt.LHS = false; % Enables Monte-Carlo sampling
FitOpt.nTrials = 200;
FitOpt.nIter = 51;
FitOpt.weightingdown = [320, 312];
FitOpt.weightingup = [332, 335];
FitOpt.weightingfactor = [2, 3.5];
FitOpt.useParallel = true;
FitOpt.algorithm = ’sqp’;
FitOpt.AbsScale = false;

% Call SpecProFi
SpecProFi({’garlic’,’pepper’} {spc, spc2} Sys, Vary, {Exp,Exp2} FitOpt);
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3.3.2 Advanced fitting options

Option = Function

FitOpt.ARes n, [n1, n2, ...] Constant isotropic hyperfine constraints

FitOpt.gRes n Constant isotropic g-tensor constraints

FitOpt.equivHFcoupling [n1, n2, ...] Define groups of equivalent nuclei

FitOpt.smartGrid true, false Enables the smart grid option

FitOpt.fastGrid n Steps after pre-optimization

FitOpt.FGalgorithm string Algorithm for post-optimization

FitOpt.diff isotopes ’Iso1, Iso2, ...’ One hyperfine coupling for different isotopes

FitOpt.isomixtures ’Iso1, Iso2, ...’ Isotope-mixture with same hyperfine coupling

FitOpt.nonuniform field vector Non-uniform field or frequency

FitOpt.filename string Final output filename

FitOpt.verbose ’iter’, ’off’ Console information
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FitOpt.ARes and FitOpt.gRes

FitOpt.ARes restricts hyperfine tensors to a isotropic value during the fitting proce-

dure. The isotropic values can be also provided for multiple nuclei. The anisotropic

components are fitted while the isotropic restrictions are respected.

FitOpt.gRes restricts the g-tensor to a isotropic value, provided by the user. FitOpt.ARes

and FitOpt.gRes are especially useful if the isotropic values of the interaction tensors

are known (for example from liquid-state cw-EPR data). An example for using isotropic

constraints is shown in Script 20.

Script 20: Basic example for fitting a solid-state spectrum (pepper) under isotropic constraints.

% Load the signal
[field, spc] = LoadEPRfile(’Sample solid’);

% EasySpin parameters
Exp.mwFreq = 9.45;
Exp.Range = [min(field), max(field)];
Sys.S = 0.5;
Sys.g = [2.02, 2.04, 2.12];
Sys.Nucs = ’Cu’;
Sys.A = [10, 20, 100];

% Parameters for fitting
Vary.g = [0.03, 0.03, 0.06];

% SpecProFi options
FitOpt.nTrials = 200;
FitOpt.nIter = 51;
FitOpt.gRes = 2.06; % Restriction to giso = 2.06
FitOpt.ARes = 45; % Restriction to Aiso = 45 MHz
FitOpt.algorithm = ’LevMarq SR’;

% Call SpecProFi
SpecProFi(’pepper’, spc, Sys, Vary, Exp, FitOpt);
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FitOpt.equivHFcoupling

FitOpt.equivHFcoupling is an option that defines multiple nuclei to be magneti-

cally equivalent. A vector needs to be provided which defines groups of equivalent nuclei:

Script 21: Basic example for fitting a solid-state spectrum (pepper) using more fitting options

of SpecProFi.

% Define spin system
Sys.Nucs = ’N,H,H,H’
Sys.A = [10, 110; 10, 20; 10, 20; 10, 20];

Vary.A = [10, 10; 8, 8];
FitOpt.equivHFcoupling = [1, 2, 2, 2] % 1 = N-group, 2 = H-group

In Script 21 the three hydrogen nuclei were grouped (group 2) into one “magnetic group”

in the FitOpt.equivHFcoupling vector and therefore defined as magnetically equiv-

alent. In a fitting procedure the same tensor is used for all three hyperfine couplings with

the hydrogen nuclei. For this reason, only two tensors are defined in Vary.A, one for the

nitrogen nucleus and the second for the three hydrogen nuclei.

Script 22: Basic example for fitting a zero-field populations of a spin-polarized triplet.

% Load the signal
[field, spc] = LoadEPRfile(’Sample solid’);

% EasySpin parameters
Exp.mwFreq = 9.45;
Exp.Range = [min(field), max(field)];
Sys.S = 0.5;
Sys.g = [2.02, 2.04, 2.12];
Sys.Nucs = ’Cu,Cu’;
Sys.A = [10, 20, 100; 10, 20, 100];
Sys.logtcorr = -11.0;

% Parameters for fitting
Vary.g = [0.03, 0.03, 0.06];
Vary.A = [10, 10, 30];

% SpecProFi options
FitOpt.nTrials = 200;
FitOpt.nIter = 51;
FitOpt.equivHFcoupling = [1, 1]; % Same hyperfine tensor for both copper

% Call SpecProFi
SpecProFi(’pepper’, spc, Sys, Vary, Exp, FitOpt);
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FitOpt.diff isotopes and FitOpt.isomixtures

The optional parameter FitOpt.diff isotopes can be used to define a global fit

using different isotopes. For example, one spectrum recorded from a 17O-labeled sample,

while the other signal is obtained from a 16O-labeled sample. The assumption is that the

hyperfine parameters are the same. The nucleus is not provided as Sys.Nucs. Instead

a cell array with the isotope names is defined as FitOpt.diff isotopes variable.

Script 23: Basic example for fitting two slow-motion spectrum (chili) by using different nitrogen

isotopes.

% Load the signal
[field, spc] = LoadEPRfile(’Sample liquid 15N’);
[field2, spc2] = LoadEPRfile(’Sample liquid 14N’);

% EasySpin parameters
Exp.mwFreq = 9.45;
Exp.Range = [min(field), max(field)];
Exp2 = Exp;
Sys.S = 0.5;
Sys.g = [2.02, 2.04, 2.12];
Sys.A = [10, 20, 100];
Sys.logtcorr = -9.0;

% Parameters for fitting
Vary.g = [0.03, 0.03, 0.06];
Vary.A = [10, 10, 30];

% SpecProFi options
FitOpt.nTrials = 200;
FitOpt.nIter = 51;
FitOpt.weightingfactor= [1, 2];
FitOpt.diff_isotopes = {’15N’,’14N’}; % Global fit with different isotopes

% Call SpecProFi
SpecProFi(’chili’, {spc, spc2}, Sys, Vary, {Exp, Exp2}, FitOpt);
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FitOpt.isomixtures is an extension to FitOpt.diff isotopes, where a defined

mixture of isotopes can be fitted using one set of hyperfine parameters. However, the

isotropic contribution of the hyperfine tensor is scaled by the ratio of the gyromag-

netic ratio of the isotopes by SpecProFi and needs to be provided by the user. The

FitOpt.isomixtures is for example useful if two data sets are present. One recorded

for example from a sample with pure 14N nuclei and the other from a sample with a 3:4

mixture of 14N and 15N. This example is presented in Script 24.

Script 24: Basic example for fitting two slow-motion spectrum (chili) by using a pure nitrogen

isotopes and a isotopes mixture.

% Load the signal
[field, spc] = LoadEPRfile(’Sample liquid 14N15N mix’);
[field2, spc2] = LoadEPRfile(’Sample liquid 14N’);

% EasySpin parameters
Exp.mwFreq = 9.45;
Exp.Range = [min(field), max(field)];
Exp2 = Exp;
Sys.S = 0.5;
Sys.g = [2.02, 2.04, 2.12];
Sys.A = [10, 20, 100];
Sys.logtcorr = -9.0;

% Parameters for fitting
Vary.g = [0.03, 0.03, 0.06];
Vary.A = [10, 10, 30];

% SpecProFi options
FitOpt.nTrials = 200;
FitOpt.nIter = 51;
FitOpt.weightingfactor= [1, 2];
FitOpt.diff_isotopes = {’15N’,’14N’}; % Global fit with different isotopes
gyrorato = -1.4 % ratio of the gyromagnetic ratios of 15N and 14N
FitOpt.isomixtures = {1, 4, 3, gyrorato, ’15N’,’14N’}; % 4:3 ratio of 1

% Call SpecProFi
SpecProFi(’chili’, {spc, spc2}, Sys, Vary, {Exp, Exp2}, FitOpt);
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FitOpt.smartGrid, FitOpt.fastGrid, FitOpt.FGalgorithm and

FitOpt.useParallel

FitOpt.smartGrid, FitOpt.fastGrid and FitOpt.useParallel are tools to

make the time consuming semi-stochastic analysis faster. FitOpt.useParallel en-

ables parallel computing. The parallel computing toolbox is only invoked if available and

th local parallel pool is used to distribute different sampling points to different CPUs.

The FitOpt.smartGrid option can be set to true to enable a “smarter“ grid through

the parameter hypercube. If the FitOpt.smartGrid is set to true, SpecProFievaluates

after half of the optimization steps if it is promising to carry on with the optimization.

The algorithm which determines if an optimization process is carried on is rather tedious

and can be found in reference [1]. An example for using the FitOpt.smartGrid as

well as parallel computing is shown in Script 19.

Script 25: Basic example for fitting a solid-state spectrum (pepper) using the

FitOpt.smartGrid option and the FitOpt.useParallel option of SpecProFi.

% Load the signals
[field, spc] = LoadEPRfile(’Sample liquid’);
[field2, spc2] = LoadEPRfile(’Sample solid’);

% EasySpin parameters
Exp.mwFreq = 9.45;
Exp.Range = [min(field), max(field)];
Exp2.mwFreq = 9.7;
Exp2.Range = [min(field2), max(field2)];
Sys.S = 0.5;
Sys.g = [2.02, 2.04, 2.12];
Sys.logtcorr = -11.0;
% Parameters for fitting
Vary.g = [0.03, 0.03, 0.06];

% SpecProFi options
FitOpt.nTrials = 500;
FitOpt.nIter = 120;
FitOpt.useParallel = true;
FitOpt.smartGrid = true;
FitOpt.algorithm = ’sqp’;

% Call SpecProFi
SpecProFi({’garlic’,’pepper’} {spc, spc2} Sys, Vary, {Exp,Exp2} FitOpt);
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The FitOpt.fastGrid is a further option to improve the performance of the analy-

sis, either in speed or chances to find an optimal global solution. The word ”fast“ in

FitOpt.fastGrid is rather misleading, as the enabling the FitOpt.fastGrid op-

tion makes the program not necessarily faster. The FitOpt.fastGrid option is tool

for a hybrid algorithm combined with a FitOpt.smartGrid option. Identical to the

FitOpt.smartGrid option, the algorithm decides if an optimization process is car-

ried after half of the optimization steps. In contrast to the FitOpt.smartGrid option,

FitOpt.fastGrid uses a different optimization algorithm for carrying on the optimiza-

tion. This algorithm can be defined by setting FitOpt.FGalgorithm. If no algorithm

is provided, the Nelder-Mead Simplex algorithm is used for the second optimization. Fur-

thermore, the user needs to define how detailed the second optimization is supposed to

be by setting FitOpt.fastGrid to a number, which means the number of iterations.

An example for using the FitOpt.fastGrid is shown in Script 26.

Script 26: Basic example for fitting a solid-state spectrum (pepper) using the

FitOpt.fastGrid option of SpecProFi.

% Load the signals
[field, spc] = LoadEPRfile(’Sample liquid’);
[field2, spc2] = LoadEPRfile(’Sample solid’);

% EasySpin parameters
Exp.mwFreq = 9.45;
Exp.Range = [min(field), max(field)];
Exp2.mwFreq = 9.7;
Exp2.Range = [min(field2), max(field2)];
Sys.S = 0.5;
Sys.g = [2.02, 2.04, 2.12];
Sys.logtcorr = -11.0;
% Parameters for fitting
Vary.g = [0.03, 0.03, 0.06];

% SpecProFi options
FitOpt.nTrials = 500;
FitOpt.nIter = 120;
FitOpt.useParallel = true;
FitOpt.FGalgorithm = ’interior-point’; % Interior-point for 2nd optimization
FitOpt.fastGrid = 45; % Use 45 iterations for the 2nd optimization
FitOpt.algorithm = ’sqp’;

% Call SpecProFi
SpecProFi({’garlic’,’pepper’} {spc, spc2} Sys, Vary, {Exp,Exp2} FitOpt);
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3.3.3 Variable (individual) fitting parameters in global analysis

Some spin system parameters might differ, depending on the experiment. For this reason,

some system parameters (Sys.lw, Sys.lwpp, Sys.logtcorr, Exp.Temperature,

Exp.mwFreq, Exp.ModAmp, Exp.mwPhase) can be fitted individually. Line-widths

might be similar for different experiments but are not necessarily the same. Therefore it

can be fitted either global or individually. The rotational correlation time changes with

temperature and can therefore be fitted individually.

Script 27: Basic example for fitting a liquid-state spectrum (garlic) using individual rotational

correlation times.

% Load the signals
[field, spc] = LoadEPRfile(’Sample liquid 280K’);
[field2, spc2] = LoadEPRfile(’Sample liquid 320K’’);

% EasySpin parameters
Exp.mwFreq = 9.45;
Exp.Range = [min(field), max(field)];
Exp2.mwFreq = 9.38;
Exp2.Range = [min(field2), max(field2)];
Sys.S = 0.5;
Sys.g = [2.02, 2.03];
Sys.Nucs = ’N’;
Sys.A = [10, 20, 100];
Sys.logtcorr = [-10.5; -11.0];

% Parameters for fitting
Vary.g = [0.01, 0.01];
Vary.A = [10, 10, 20];
Vary.logtcorr = [0.8; 0.8];

% SpecProFi options
FitOpt.nTrials = 200;
FitOpt.nIter = 51;

% Call SpecProFi
SpecProFi(’garlic’, {spc,spc2}, Sys, Vary, {Exp,Exp2}, FitOpt);
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While Script 27 shows an example of a global analysis with individually variable rota-

tional correlation time (logtcorr), Script 28 shows the example of a global analysis by

fitting the line-widths individually.

Script 28: Basic example for fitting a solid-state spectrum (pepper) by using individual line-

widths.

% Load the signals
[field, spc] = LoadEPRfile(’Sample solid Xband’);
[field2, spc2] = LoadEPRfile(’Sample solid Qband’);

% EasySpin parameters
Exp.mwFreq = 9.45;
Exp.Range = [min(field), max(field)];
Exp2.mwFreq = 33.38;
Exp2.Range = [min(field2), max(field2)];
Sys.S = 0.5;
Sys.g = [2.02, 2.03];
Sys.Nucs = ’N’;
Sys.A = [10, 20, 100];
Sys.lw = [0.2, 1.0; 0.4, 0.8];

% Parameters for fitting
Vary.g = [0.01, 0.01];
Vary.A = [10, 10, 20];
Vary.lw = [0.2, 0.2; 0.2, 0.3]; % individually fitting the line-width
Vary.mwFreq = [0.01, 0.02]; % individually fitting the frequencies

% SpecProFi options
FitOpt.nTrials = 200;
FitOpt.nIter = 51;

% Call SpecProFi
SpecProFi(’pepper’, {spc,spc2}, Sys, Vary, {Exp,Exp2}, FitOpt);

35



3.3.4 Experimental parameter which can be fitted with SpecProFi

Commonly some unknown parameter of the spin system (Sys) are optimized in a fit-

ting procedure. However, there might be some experimental parameters which are not

determined, like the spin temperature in spin-polarized systems, or not sufficiently de-

termined, like the microwave frequency. Therefore, some experimental (Exp) parameters

can be fitted. The parameters available for fitting are Temperature, mwFreq, ModAmp,

mwPhase. It should be noted that for a global analysis each experimental is fitted indi-

vidually! An example is shown in Script 29.

Script 29: Basic example for fitting a solid-state spectrum (pepper) by using individual line-

widths.

% Load the signals
[field, spc] = LoadEPRfile(’Sample solid Xband’);
[field2, spc2] = LoadEPRfile(’Sample solid Qband’);

% EasySpin parameters
Exp.mwFreq = 9.45;
Exp.Range = [min(field), max(field)];
Exp2.mwFreq = 33.38;
Exp2.Range = [min(field2), max(field2)];
Sys.S = 0.5;
Sys.g = [2.02, 2.03];
Sys.lw = [0.2, 1.0; 0.4, 0.8];

% Parameters for fitting
Vary.g = [0.01, 0.01];
Vary.mwFreq = [0.01; 0.02]; % Variation of the microwave frequency

% SpecProFi options
FitOpt.nTrials = 200;
FitOpt.nIter = 51;

% Call SpecProFi
SpecProFi(’pepper’, {spc,spc2}, Sys, Vary, {Exp,Exp2}, FitOpt);
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3.3.5 Fitting zero-field populations with SpecProFi

Zero-field populations can be fitted by optimizing the (spin) temperature vector (Exp.temperature).

A typical example is a spin-polarized triplet signal (Script 30).

Script 30: Basic example for fitting a solid-state spectrum (pepper) by using individual line-

widths.

% Load the signals
[field, spc] = LoadEPRfile(’Sample spinpolarized triplet’);

% EasySpin parameters
Exp.mwFreq = 9.45;
Exp.Range = [min(field), max(field)];
Exp.Temperature = [0.5, 0.2, 0.3];
Sys.S = 1;
Sys.g = 2.02;
Sys.D = [1000, 100];
Sys.lw = [0.2, 2.0];

% Parameters for fitting
Vary.D = [300, 30];
Vary.Temperature = [0.2, 0.2, 0.2]; % Variation of zero-field populations

% SpecProFi options
FitOpt.nTrials = 200;
FitOpt.nIter = 100;

% Call SpecProFi
SpecProFi(’pepper’, spc, Sys, Vary,Exp, FitOpt);

For a global fit, the zero-populations can be either fitted individually for each spectrum

or globally. A single Vary.Temperature needs to provided for fitting the zero-field

populations globally. Otherwise a vector of vectors needs to be provided.

% Fitting zero-field populations for two data sets

% Global fitting of zero-field populations
Vary.Temperature = [0.2, 0.2, 0.2];

% individual fitting of zero-field populations
Vary.Temperature = [0.2, 0.2, 0.2; 0.3, 0.2, 0.1];
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3.3.6 Full list of parameters which can be optimized

List of parameters which can be provided in the Vary structure:

• g, gFrame, gStrain

• A, AFrame, AStrain

• D, DFrame, DStrain

• Q, QFrame

• lw, lwpp, lwEndor, HStrain

• J, ee, eeD

• logtcorr

• weight

• nn

Additional experimental parameter which can be provided in the Vary structure:

• Temperature

• mwFreq

• ModAmp

• mwPhase
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3.3.7 Full list of fitting algorithms

string Algorithm Toolbox Boundaries

’trust-region-reflective’ Trust-region reflective Yes Yes

’levenberg-marquardt’ Levenberg-Marquardt Yes No

’LevMarq SR’ Levenberg-Marquardt No Yes

’interior-point’ Interior-point Yes Yes

’sqp’ Sequential quadratic programming Yes Yes

’interior-point’ Interior-point Yes Yes

’simplex’ Nelder-Mead simplex No No
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4 Examples

4.1 Fitting multiple Harmonics

Script 31: Fitting a liquid-state signal by using a global analysis of the field-modulated signal

and the integrated signal.

% Load the signals and integrate it (spc2)
[B, spc1] = LoadEPRfile(’Sample liquid’);
spc1 = baseline_correction(spc1);
spc2 = int_and_diff(spc1, 1); % Integration of the signal

Exp1= struct(’Range’,[min(B), max(B)],’mwFreq’,9.7646,’Harmonic’,1);
Exp2 = Exp1;
Exp2.Harmonic = 0;

% EasySpin parameters
Sys.S = 0.500000 ;
Sys.g = 2.004935 ;
Sys.lwpp = 0.095 ;
Sys.Nucs = ’1H,1H’;
Sys.A = [4.658200; 14.548000] ;
Sys.n = [12, 6] ;

% Parameters for fitting
Vary.lwpp = 0.05 ;
Vary.A = [0.8; 0.8]

% SpecProFi options
FitOpt.nTrials = 50;
FitOpt.nIter = 90;
FitOpt.fastGrid = 150;
FitOpt.weightingfactor = [0.5 1];

% Call SpecProFi
SpecProFi(’garlic’, {spc1,spc2}, Sys,Vary, {Exp1,Exp1}, FitOpt);
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Figure 14: Screenshot of SpecProFi, running with the input shown in Script 31.
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4.2 Global analysis of orientation-selective ENDOR data

Script 32: Example for a global analysis of three orientation-selective W-band ENDOR data.

% Load the signals
[frq1, spc1] = LoadEPRfile(’Sample ENDOR X’);
[frq2, spc2] = LoadEPRfile(’Sample ENDOR Y’);
[frq3, spc3] = LoadEPRfile(’Sample ENDOR Z’);

% EasySpin parameters
Exp1 = struct(’Range’,[fmin1 fmax1],’Field’,3347.4,’Harmonic’,0,...

length(frq1) ’mwFreq’, 93.902579,’ExciteWidth’,20);
Exp2 = struct(’Range’,[fmin2 fmax2],’Field’,3348.6,’Harmonic’,0,’nPoints’,...

length(frq2),’mwFreq’, 93.90276,’ExciteWidth’,10);
Exp3 = struct(’Range’,[fmin3 fmax3],’Field’,3350.7,’Harmonic’,0,’nPoints’,...

length(frq3),’mwFreq’, 93.897446,’ExciteWidth’,20);

% Radical 1
Sys1 = struct(’S’,1/2,...

’Nucs’,’13C’, ’A’,[15.083357 11.607984 13.030755], ...
’AFrame’, [1 1 1], ’weight’, 0.610729, ...
’g’,[2.00427 2.0036 2.0022],’lwEndor’,0.349645);

% Radical 2
Sys2 = struct(’S’,1/2,...

’Nucs’,’13C’, ’A’,[0.854952 1.725230 23.429808], ...
’AFrame’, [0.019530 0.244436 0.746466],...
’g’,[2.00427 2.0036 2.0022],’lwEndor’,0.28, ’weight’,0.3463);

SimOpt = struct(’nKnots’,40,’Verbosity’,0,’Intensity’,’on’, ...
’Method’,’perturb2’);

% Parameters for fitting
Vary1.AFrame = [1 1 1];
Vary1.A = [3 3 3];
Vary2.A = [3, 2, 2];
Vary2.weight = 0.2;

% SpecProFi options
FitOpt.nTrials = 200;
FitOpt.nIter = 80;

% Call SpecProFi
SpecProFi(’salt’,{spc1,spc2,spc}, {Sys1,Sys2}, {Vary1,Vary2}, ...

{Exp1,Exp2,Exp3}, SimOpt, FitOpt);
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Figure 15: Screenshot of SpecProFi, running with the input shown in Script 32.
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